
A FLEXIBLE " U F A C l " G SYSTEM DESIGN ANI) FXALUATION PACKAGE

C. Gonzdlez Ferndndez-Vallejo
M. L. Reynoso Pineda
P. B. Garcia de Castro

N. Julidn Rigau

Instituto de Automltica Industrial
La Poveda, Arganda del Rey

28500 MADRID SPAIN

hBSTRACT

A Flexible Manufacturing System design and eva-
luation package has been designed upon request of
the leading Spanish manufacturer of the field.
The package consists on three programs, the com-
ponent library manager, the plan design program
and the simulator program. The library manager.
contains both shape and chacteristics of the com-
ponents. The plan design program permits the
location of components extracted from a library,
its connection through transportation elements,
the drawing of a layout and the storing of its
map for possible future modification. The simula-
tor program consists on a process description and
a simulation. The simulation is made through a
specially designed program developed in C langua-
e.

1 INTRODUCTION

A FMS is a very expensive piece of hardware whose
performance is usually required by contract to be
of a given amount. The penalties in case of
breach of contract are terrible and a small firm
making a mistake might even go broken. Because of
this, a great deal of effort is invested in
techniques that attempt to measure the throughput
of a PMS before it is constructed and many of
them are based on simulation. As a matter of
fact, no other good technique exists presently
other than simulation although many efforts are
being done in other directions. Petri Nets offer
mathematical instruments to study parallelism and
timed petri nets (1) offer the promise of the
same thing for the future. Eowever, at this
moment the techniques timed petri nets use are
essentially similar to simulation.

-

1.1 Current Tendencies

The efforts developed in the design of tools for
the simulation of FMS's could be clasified
according to these criteria:

- The programming techniques used in the

- The degree of integration.
- The number and complexity of the analysis

simulation process.

tools additionally provided.

Among the programming techniques used in
discrete-event simulation we find event schedul-
ing (Simscript), activity scanning (GPSS),
process interaction (Simula, GPSS, Simscript),
message-based simulation (2) , etc. Each of these
techniques is more suitable for a specific class
of problem. For example, event-scheduling is best
Suited for situations where the system and its
actions are well defined, while process interac-
tion is better for modeling systems with many
parts that must work together (3).

Depending on the degree of integration we have
specific programming languajes (SIMAN, GPSS,
SLAM, MAST, MAP/1, SIMSCRIPT, etc), modular
systems that generate specific programming lan-
guages code and interactive, complete environ-
ments that allow the user to model FMS's without
the need of knowledge about programming or any
previous relation to computers (SIMFACTORY,
SIMULATIONCRAFT, (4)) Depending on the kind of
tools provided by the system there are inteligent
interfaces for the input of data (natural
language recognition (5) , assisted drawing tools,
detection of inconsistencies, etc.) and tools
that analize the output data of the simulation
process. Among these ones there are analizers
that detect malfunctions in the FMS's like
bottlenecks, overloads, etc., and suggest changes
for improving the performance (5,6). More
advanced tools pretend to satisfy objectives set
by the user in the scope of cost/performace
values; the user provides alternative designs of
the FMS and the tool tries to meet the goals by
applying the rules stored in a knowledge-base
(6).

The future tendencies in this area aim at the
integration of this systems with CAD/CAM tool:
and with production control and planning software
as well as making them more intelligent in order
to obtain optimal configurations given the set of
elements that constitute the FMS.

1.2 Our Approach To FMS Design Through Simulation

In this work, we describe the system we are
developing for the computer aided simulation of
FMS's. It is to permit an easy evaluation of the
performance of the system by a human operator,
and also it is to be able to perform some
automatic optimation. The goal is twofold, either

513

CH2795-3/89/0000-0513 $1.00 1989 IEEE

to evaluate the design (The manufacturer's
problem) or to evaluate the manufacturing process
(The user's problem). The first goal is used
before the FMS is actually built: several designs
are tested so that one may be selected. The
second solves the problem of the planner. While
the FMS is in production, the manufacturing plan
.an modify the overall performance of the cell in
ways that cannot be foreseen, thus a mumber of
plans can be tested and one of them selected.

The simulation system with which we are dealing,
consists on three parts. The first one is a
system that maintains a detailed library with the
elements that the engineer uses to design the
FMS. The degree of detail is important as far as
design and budgeting are concerned; the second
one is a design system that allows the user to
draw a realistic layout of the FMS generating a
logical representation of it for simulation
purposes. Most of the simulation systems actually
worki'ng lack this facility (4,5,6) which we think .
is very important for the engineer that designs
and budgets FMS's in close relation with the
customer; the third part is the simulation tool,
consisting on both a manufacturing definition
facility by means of which the designer can
specify sequences of operations, batch sizes,
control strategies etc. and the simulator which
takes elements from the other systems and
generates statistical information about the
performance of the FMS.

2 THE ELEMENT LIBRARY

The first stage in the manufacturing of a library
is to analize the elements the library is to
keep. So, in the case of FMSs it must be studied
the elements that participate in it in order to
make abstractions of the characteristics that are
important of simulation.

The objetive of this element library is to save
all the graphical, numerical and alfanumerical
characteristics of some of the elements that
constitute an FMS (the "fixed" and "transport"
elements). These characteristics are inherent to
the elements, independently of the particular
system in which they will be used. So when the
layout has to be done the user only has to set
their parameters and put them together. As this
program is a modular one it is posible to modify
an element without disturbing the whole system
and it also permits the definition of several
elements in parallel.

We can model the FMS as a device that transforms
the material with which it works. This material
is transformed by its succesive pass through
several machines. This flow of material from one
station to another is done by means of
transportation elements.So it looks natural to
conclude that there are, at least, four major
groups involved in simulation of FMS's. We will
call each one of this groups a class.

We will use, in order to define the elements that
constitute a FMS the sign '0 ' to denote a list
that may or may not be empty and ' () I to denote a
n-tuple.

So, for us an element is made up as

ELEMENT = (CLASS, name, model,[GENERAL
CHARACTERISTIC}, [GENERAL RESTRICTION},
[VARIABLE ATTRIBUI'E},[OPERATION),
{BUFFER), (FAILURE), [DESIGN}, (I/O))

Where CLASS can receive any of the following
values :

"fixed" includes machines and operators.
transport" includes conveyors, cranes,
trucks, robots, etc..
"pallet" corresponds to the flowing entities
of the system. These elements correspond to
pallets that transport the parts to be
processed or the parts themself.
"consumable" correspond to the tools needed
for the processing of the parts; it also
include elements needed by the machines to
work as it is lubricant, electric power,
water, etc.. This elements are important
during simulation because they impose not only
phisical but economical limitations to the
sys tem.
"Source/Sink" Correspond to the 1/0 elements,
that create pieces in initial state or make
them disappear when they are finished.
"Consumable store" is an element which keeps
consumable elements as directed in the process
definition language.
"Product store" is an element that can keep
the pieces for some time while waiting.

-_- GENERAL CHARACTERISTIC is of the form (name,
VALUE), where

VALUE = number or string

This parameter correspond to the data that is
fixed to the element and its value never
changes. It is the same for all simulations.

--- GENERAL RESTRICCION is (name, minimun value,
maximun value, increment)

This parameter sets limitations to the
input/output of the element. It is not able to
accept parts that do not have the value of
their respective general restriction with the
same name among these minimun and maximun
values.

-_- VARIABLE ATRIBUTE is also (name, minimun
value, maximun value, increment)

This atributes will have different values
during the simulation and will determine the
state of the element. It may also be defined
as a numerical or alfanumerical set. In case
of being a set its definition will be :

(name, (value))

___ OPERATION = [action)

514

I

Action is the name of one of the operations an
element is able to realize. For example
drilling.

___ BUFFER = (name, capacity, (name of
consumable})

--_ FAILURE = (name, (probability density,
minimum time between failures, maximun time
between failures, minimun length of the
failure, maximun duration of the failure))

A Failure determines the probability of
failure in the interval given. The duration of
the failure is selected randomly. In form of a
table the user will give the failure
statistics. The given values are range (time
interval between failures or mantenance),
probability (of a failure in that range) and
duration (of the failure or mantenance).

Each failure should have an associate table.

-__ DESIGN consists on a set of pictures,
representing the

- "physical area" corresponds to the physical
space ocupied by the element.

- "vital area" corresponds to the physical space
needed by the element for its correct
f unc t ion.

- "access area" corresponds to the physical
space that an element can access; for example
a robot.

- "fancy area" corresponds to the drawings the
designer may need to make his design more
legible for him. This data is a help for the
designer and is not needed for the simulation.

Each element may have a scaled physical
drawing. When the form of an element, as could
be a transport element, has a form that
depends of the FMS layout its picture is drawn
directly on it. These data will be saved in
other library. The input/output points are
drawn at this stage.

--- 110 = { POINT }

POINT = (TYPE, x-coordinate, y-coordinate)

TYPE ="input of pallets", "output of pallets",
"input/output of pallets", "input of
consumable", "output of consumible",
"input/output of consumable"

The preceding lines determine the contents of
information we need to represent an element. A
program has been developed to carry out this
task. The program consists on two parts, the
first one to help in the making of the design and
the second to help with the alphanumeric
characteristics.

program to perform the following tasks

- Help the designer in the physical layout of
the FMSs.

- Verify the design once it is made and insure
against physical errors, i.e. if some
machine lacks some system to feed things in
or out to it.

- Make the logical map of the FMS in which
abstraction is made of the physical charact-
eristics in order to develope a data
structure that might be read by the system
in order to do simulation.

In order to achieve the previously stated goals,
the first task the program makes is to help in
the realization of the layout. Access is provided
to element libraries so that the machines already
defined can be located. After, the connection
elements are put. Since we want the produced map
to be realistic, the linear elements (conveyor
belts) are only partially defined in the library,
and the final data about them (width) is only
defined at location time. This data, however, is
only needed for map purposes. The points where
two belts merge, or one forks into other two are
transportation elements and should be taken
exactly as defined in the library. After a belt
is plotted its length is computed and stored, as
well as when it is modified. This datum is
important for simulation. Area transportation
elements (robots) are located as they are defined
in the library. Whenever an element is placed,
the program prompts for a name, which is assigned
to it an determines the element completely.

The verification takes into consideration that
every fixed element has to have accessible every
one of its input and output points, that is,
given one input point of a fixed element, a
conveyor belt is to end in it, or it should be
located within the useful area of a robot. The
output points of machines are to be either conne-
cted to input of belts, or located within the
useful area of robots. Also, at least one input
and one output elements are to be present,
although there can be many more.

The logical structure of the FMS is a graph in
which each node represents a machine and is
connected to nodes representing the elements to
which its input and output points are connected.
Each node carries a reference to the library and
element therof to which it is related. The
conveyor belts are assimilated to fixed elements
that do not transform the state of the pieces
they process. The time of transition between its
input and its output is a function of its length
and the speed of the belt, a datum that can be
changed dynamically at simulation time.

4 SIMULATION

3 THE DESIGN PROGRAM After some FMS design has been succesfully
entered some more steps are necessary before a

The second part of the project consists on a simulation can be performed. First of all, the

515

manufacturing is to be described. Later the
simulator can be activated, passing to it some
data on simulation.

4.1 Manufacturing Definition

A Language has been defined to perform the task
definition, which mainly consists on the piece
manufacturing way; Input/output element
production program, general simulation program
information and initial FMS setup. Each of these
parts can reside in a different file, which is
later read by the FMS simulator.

4.1.1 Piece Definition

The definition of a piece consists on a set of
clauses, starting by one defining the piece name
and, optatively, length and ending in an END
Clause. In the middle there are three types of
clauses: PROCESS, ASSEMBLE IN and ABSORB.

A Process clause consists on
1 A machine determination (Either generic or

2 Definition of the input and output points.
2 (Optatively) Internal consumable store
composition.

3 List of operations and time they take,
including, optatively, the expense of
consumable elements made.

specific)

The ASSEMBLE IN clause consists only in a list of
machines to which the piece is to head. It must
be the last clause of the piece program.

The ABSORB clause consist on
1 A machine determination (Either generic or

2 Definition of the input and output points.
3 Time the operation takes, including,
optatively, the expense of consumable

elements made.
4 List of pieces to be absorbed, including the
input point at which they enter the machine.

specific)

4.1.2 INPUT/OUTPUT Element Activity Definition

This definition consists on two parts, a first
one to define batches in terms of pieces and a
second one to define 1/0 activity in terms of
bat Ches.

A Batch definition consists on
1 Batch name definition
2 A set of clauses, each of them specifying a
piece name, as it appears on a piece program
and a quantity, which might be a range. In
this case, at some moment, the value of the
batch number of pieces is to be selected
randomly.

A Source definition consists on
1 Source name specification, and generation
mode specification (Can be seuquential or
random).

2 Pallet name and attribute, if the FHS is to

work with pallets.

two consecutive parts generation.
3 list of Batch names and intervals between

A Sink definition consist on
1 Sink name and time of operation (The time it
takes the sink to process the part. During
this time the piece is unable to accept
input).

2 List of parts names.

4.1.3 General Simulation Data

Some data pertinent to simulation is included in
this part. These data include

- GENERAL CONTROL STRATEGY parameter, which
informs the simulator program on the strategy
use for piece addressing, when several
machines can be used for the next step. Four
options are considered: go to the closest
machine (If possible), alternate all of them,
select one of them randomly, go to the least
used of all.

- LOCAL CONTROL STRATEGY. It consists on
programs for some (or all) of the multiple
output transportation elements. One of these
programs consists on a series of clauses, each
of them stating for a given piece in a given
state the destination point, if some element
(determined by its name) is free or occupied.

- PIECE/CONSUMABLE TRANSPORTATION parameters.
They state whether the pieces (or consumable
elements) are transported directly or in
pallets.

- CONSUMABLE TRANSPORTATION STRATEGIE. This
parameter defines whether a consumable element
is substituted when its useful life ends or
when it is clear is has not life enough to
last through the operation.

- LINE SPEED.

4.1.4 Initial FMS setup.

This part permits to specify the number and
position of the pallets at starting time, the
buffer size and access type (Direct, FIFO, LIFO,
Random) and its average access time.

4.2 Data For Simulation

The design of the FMS and the manufacturing
definition provide data that is needed for the
simulation, but not enough. More data are needed
in order to carry out the simulation in the
easiest of the ways. The data we are going to
discuss here are the FMS internal representation,
the piece programs and the 1/0 element and
transportation element programs and the minimal
trees.

4.2.1 FMS Representation

516

I

The system will be represented by means of a
series of linked structures, containing, some of
them links to more structures.

Each element of a FMS is represented by a
structure, whose address quite represents the
element. Within this structure, there are
pointers to

- 110 points list elements
- Piece movements program (Only multiple
output tranportation elements)

- Piece generation/consumption program (Only
I/O elements)

- Minimal trees

The I/O point list consists on a linked list of
elements, each containing the number of the
point, its type, pointer to the element to which
this point is linked and the number of the 1/0
point.

4 . 2 . 2 FMS Component Program Representation

We have already mentioned the program to describe
specific and special behavior of multiple output
transportation elements. These piece movement
programs are linked lists, each of its elements
making reference to the movement of a piece.
These references consist on a state and a piece
name.

We represent the following program:

TRANSPORT name
SENDS pl STATE 1

IF AA FREE VIA 2
IF AB NOT
ELSE VIA 4

SENDS rm 2
IF AA NOT FREE VIA 4

- --
FREE VIA 3 -

- ---
SENDS P2 STATE 1 VIA 4
RESTVIA 5

where the meaning of the keywords is obvious, in
the Figure:

F Free
o Occupied

The 1/0 elements also have programs. These
programs are also a lists of linked lists,

themselves linked
make reference.
representation of
lists of piece
enumerated.

4.2.3 Minimal Tree

Our simulation
intelligence, and

to the elements to which they
It is a straightforward
the batch definition, where
names and batch sizes are

Representation

program is to have some
most specially the capacity to

send pieces directly to their destination at-any
moment, and the knowlege of the minimal path to
this destination. Devices contrived to this
effect are the minimal trees. They are the des-
cription of the unique minimal connection between
the machines performing two consecutive steps of
the piece program (Realize there may be several
origins and several destinations). The minimal
trees are trees with multiple roots and multiple
leaves, and its nodes contain information about
the possible destinations to which they lead.
There is a minimal tree for each state transition
from one state another. Therefore as soon as a
piece emerges from a machine, the minimal tree
can be used to determine the possible destina-
tions so that one may be selected. Any path other
than the minimal has to be given explicitly by
means of the program of a transportation element.

4.3 Simulation Program

Once the Data Structure is clear, the Simulation
Program design and implementation becomes an easy
thing. We decided originally to carry out the
implementation in C because of portability and
because it gave us a powerful structure capacity
as well as dynamic memory allocation. The program
is structured as a module generating calls and
other modules, vhich are called by the first. The
overall organization is conceived much in the way
an operating system passes requests to the
drivers serving the periferals. All the drivers
receive the same data, but each reacts in a
different way to it. All of them share a common
input and output data structure, although Some
fields might be unused. The called modules thus
receive the same data, and depending on the
module type perform one action or another.

4.3.1 Input data structure

We have said that the driver modules,
representing each one element type are called
receiving each the same data structure. This
structure has the following fields:

-Subject

-Command
-Piece

-Input

-0u t pu t

Pointer to the data structure that
represents the machine performing the
act ion.
The action that is to be performed.
Pointer to a mobile element that might be
the piece or the pallet containing the
piece.
An input point. Usually the piece input
point.
An output point. Usually the piece output
point.

517

-list A pointer to a list of consumable
products required.

The commands that may be passed to the driver
modules can be:

- Initialize
- List available consumables.
- Produce consumables.
- Status.
- Listing.
- Wake-up.
- Block output point.
- Unblock output point.
- Get piece.
- Get consumables.

4.3.2 Output data structure

The modules produce all of them an output data
structure in which the fields are:

-Piece Pointer to a mobile element or pallet.

-Output Output point.
-Block Pointer to a list of output points

blocked as result of the command.
-Ublock Pointer to a list of output points

unblocked as result of the command.
-list Pointer to a list of consumable products

produced.
-Status Result of the command, when a status is

required from an element.
-Time Time the next call is to be done to the

element .

Produced at the output point.

4.3.3 The Simulator Program (SP)

The general structure of the Simulator is easy,
since most of the complexity has been shifted t o
the data structure. The core of the program is a
module that keeps an ordered list of calls and
the moments at which the calls are to be done.
Initially the list is empty. Essentially, the
algorithm the SP implements can be written down
as follovs.

1 Establish dialog with all elements passing
them the command "INITIALIZE". Some of them,
after looking its program, will include in
their answer the time for the next call.
that will be included in the list of call.

2 Get the first entry in the list and call the
corresponding element. Analyze the ansver.
Realize that analyzing the answer might
(usually will) require to enter new commands
into the list.

3 Repeat step 2 until the list is empty.

As an example, let us do a short example in a
table form. The cell to which it corresponds is

Machine C Line D Output E I-&

T Action Message List (After)
0 Call A Initialize Empty

A answers

20 Wake up A
A answers

Call B
B answers

Call A

25 Vake Up A
A Answers

28 Wake up E
B answers

Call A
A answers

Call B
B answers

Wake me at 20 (Ai2.0)

Empty
Put out P &
Wake me at 25 (A,25)
Get Piece P
Block input &
Wake me at 28 (A,25)-

Block input
(B,28)

Nothing (B,28)

EmP tY
Unblock Input b
Wake me at 40 (B,40)
Unblock input
Put out P &
Wake me at 38 (A,38)-

Get Piece P
(B940)

... ...

... ...

5 CONCLUSIONS

The design of FHS is a very rewarding enterprise
because of the possible consequences of bad re-
sults. Our approach, consisting in aiding a human
designer with an integrated set of tools develo-
ped in common procedural language provides in our
opinion the highest cost/performance relation.

6

1.

2.

3.

4.

5.

6.

REFERENCES

Proc. Int. Whorkshop "Timed Petri Nets". IEEE
Comp. Soc. Press. 1985
Rajive L., K. Hani Chandy, A "Message-Based
Approach to Discrete- Event Simulation". IEEE
Transactions on Software Engineering, VOL
SE-13, NO 6 , JUNE 1987
Ricardo F. Garzia and Mario R. Garzia,
"Discrete-Event simulation". IEEE Spectrum
December 1986
H. Montazeri, L.F. Geldera and L. N. Van
Wassenhove. "A Modular Simulator for Design,
Planning and Control of Flexible Manufacturing
Systems". Then International Journal of
Advanced Manufacturing Technology, 3(1),

Donnie R. Ford and Bernal J. Schroer. " An
expert manufacturing simulation system".
SIMULATION. 48:5 Hay 1987
Joseph H. Hellichamp and Ahmed F.A. Wahab, "An
expert system for FMS design". SIMULATION.
4825 May 1987

15-32, 1988

51 8

